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1.     Introduction   

 

        Graph theory has seen an explosive growth due to interaction with areas such 

as information science, mathematics, chemistry, etc. Especially, it has become one 

of the most powerful mathematical tools in the analysis and study of the chemical 

sciences [18]. A chemical graph is a graph such that each vertex represents an 

atom of the molecule, and represents covalent bonds between atoms by edges of 

the corresponding vertices [1]. Furthermore, the graph theory has successfully 

provided chemists with a variety of very useful tools, namely, the topological 

index. A topological index is a numerical value associated with chemical 

constitution purporting for the correlation of a chemical structure with various 

physical properties, chemical reactivity or biological activity. Research on the 

topological indices has been intensively rising recently. There are numerous 

topological descriptors that have found some applications in theoretical chemistry, 

especially in QSPR/QSAR research [2-4, 6, 7, 9, 12].   

        Let ( , )G V E  be a simple undirected graph of order n and size m. We begin 

by recalling some standard definitions that we need throughout this paper. For any 

vertex v V , the open neighborhood of v is ( ) { | }GN v u V uv E    and closed 

neighborhood of v is [ ] ( ) { }G GN v N v v  .  The degree of vertex v in G denoted 

by ( )Gdeg v , that is the size of its open neighborhood. The distance  ,Gd u v  

between two vertices u  and v  in G  is the length of a shortest path between them 

[5,21]. The eccentricity value of the vertex u V denoted by ( )G u , that is the 
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largest between vertex u and any other vertex v of G, ( )( ) max ( , )G v V Gu d u v  . 

Let f uv E  . Then, the degree of the edge f, denoted by deg ( )G f , is defined to 

be deg ( ) deg ( ) deg ( ) 2G G Gf u v   . Let 1 1 1f u v  and 2 2 2f u v  be two edges in 

E . The distance between 1f  and 2f , denoted by  1 2,Gd f f , is defined to 

          1 2 1 2 1 2 1 2 1 2, min , , , , , , ,G G G G Gd f f d u u d u v d v u d v v . The eccentricity 

value of the edge f E , denoted by ( )G f , is defined as 

 ( ) max ( , ) |G Gf d f e e E   [5, 21].   

        The first topological index namely wiener index in chemistry is developed by 

the chemist Harold Wiener [22]. The wiener index aims to sum of the half of 

distances between every pair of vertices of G and it is defined as: 

1 1

1
( ) ( , )

2

n n

G i j

i j

W G d v v
 

  . 

There are a lot of topological indices were introduced after defining the wiener 

index. More recently, a new topological index called eccentric connectivity index 

has been investigated. The eccentric connectivity index ( )c G  was defined by 

Sharma et al [15] and has been further studied by some authors [10, 11, 15, 23]. 

The eccentric connectivity index ( )c G  for any graph G is defined as: 

( )

( ) ( )deg ( )c

G G

u V G

G u u 


  . 

After, a new topological index, edge eccentric connectivity index, has been 

studied. This index was introduced by Xu et al. [20] and has been further studied 

by Odabas [4, 13], Turaci et al. [19] and Aslan [2]. The edge eccentric 

connectivity index of a graph G denoted by ( )c

e G , is defined as: 

( )

( ) ( )deg ( )c

e G G

f E G

G f f 


  , 

where ( )G f  is the eccentricity value and deg ( )G f  is the degree of an edge f  in 

the graph G. The eccentric connectivity index and the edge eccentric connectivity 

index are the distance-related topological invariants whose potential of predicting 

biological activity of the certain classes of chemical compounds made them very 

attractive for use in QSAR/QSPR studies [13, 18, 19]. 

        The silicates are the largest, the most interesting and the most complicated 

classes of minerals so far [8, 14]. Furthermore, the silicates are obtained by fusing 

metal oxides or metal carbonates with sand, also they are building blocks of the 

common rock-forming minerals [14, 16]. The tetrahedron 4SiO  is a basic unit of 

silicates. Almost all silicates contain 4SiO  tetrahedral [14, 17]. In the chemistry, 

the corner vertices of 4SiO  tetrahedran represent oxygen ions and the center 

vertex represents the silicon ion. In the graph theory, we call the corner vertices as 

oxygen nodes and the center vertex as silicon node [14]. We display a 4SiO  

tetrahedron in Figure 1. 
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Figure 1. A 4SiO  tetrahedron in which corner vertices are oxygen vertices and central  

vertex is silicon vertex. 

 

Some of the structural units found in silicates which are called orthosilicates, 

pyrosilicates and chain silicates are shown in Figure 2.  

 

 

 

Figure 2. Different kinds of silicates. 

 

2.   The edge eccentric connectivity index of some chain silicates networks 

 

Definition 2.1. [8] A chain silicates network of length n symbolizes as nCS  is 

obtained by arranging n tetrahedra linearly. The number of vertices in nCS  with 

1n   is 3 1n   and number of edges is 6n . A chain silicates network of length 

five is shown in Figure 3. 

 

Figure 3. The chain silicates network 5CS .  

Definition 2.2.  We define double chain silicates network of length n as follows: 

A double chain silicates network of length n symbolizes as nDCS , also it consists 

of two condensed identical silicates chains. The number of vertices in nDCS  with 

1n   is 
11 7 / 2 1/ 2( 1)

2

nn   
 and the number of edges is 12n . A double chain 

silicates network of length five is shown in Figure 4.    
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Figure 4. The double chain silicates network 5DCS . 

Theorem 2.1. Let nCS  be a chain silicates network of length 2n  . Then,  

 

 

2

2

1
63 42 19 , ;

2
( )

1
63 42 12 , .

2

c

e n

n n if n is odd

CS

n n if n is even




 

 
  


 

Proof.  We first label the edges of the chain silicates network nCS  as in Figure 5. 

 

 
Figure 5.  Labeling of edges in a chain silicates network nCS . 

 

The degrees of every edge in the chain silicates network nCS  of length n are as 

follows:  

1deg ( ) 10
nCS if  , where 2 1i n   , 

2 3deg ( ) deg ( ) 7
n nCS i CS if f  , where 2 i n  , 

4 6deg ( ) deg ( ) 7
n nCS i CS if f  , where 1 1i n   , 

5deg ( ) 4
nCS if  , where 1 i n  , 

11 1deg ( ) deg ( ) 7
n nCS CS nf f  , 

12 13 4 6deg ( ) deg ( ) deg ( ) deg ( ) 4
n n n nCS CS CS n CS nf f f f    . 

The eccentricity values of the edges in chain silicates network nCS  of length n 

can be derived as follows: 
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2 3 5

1 4 6

( ) ( ) ( ) 1
,

( ) ( ) ( ) 2

n n n

n n n

CS i CS i CS i

CS i CS i CS i

f f f n i n
where i

f f f n i

  

  

       
       

. 

We have two cases depending on n. 

Case 1. n is even. 
6

1 1

( ) ( )deg ( )
n n

n
c

e n CS ij CS ij

i j

CS f f 
 

 
  

 
   

              
2 6

1 1

2 ( )deg ( )
n n

n

CS ij CS ij

i j

f f
 

 
  

 
   

             
            

    

2
* * *

1

2 ( )10 2 1 7 2 7 ( 1)4

3.4. 3.2.( 1)

n

i

n i n i n i n i

n n



 
          

 

  


 

    
2

1

2 42 42 18 18 6
n

i

n i n


 
     

 
  

   21
63 42 12

2
n n   . 

Case 2. n is odd. 
6

1 1

( ) ( )deg ( )
n n

n
c

e n CS ij CS ij

i j

CS f f 
 

 
  

 
   

Let ( 1) 2k n  . 

( 1) 2 6 6

1 1 1

2 ( )deg ( ) ( )deg ( )
n n n n

n

CS ij CS ij CS k j CS k j

i j j

f f f f 


  

 
  

 
    

Clearly, we get  

          2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( 1) 2
n n n n nCS k CS k CS k CS k CS kf f f f f n          ,     

          1( ) ( 1) 2
nCS kf n   . 

Thus, 

            

             

    

( 1) 2
* * *

1

2 10 2 1 7 2 7 1 4

1 1 1
3.4. 3.2.( 1) 4.7. 4. 10.

2 2 2

n

i

n i n i n i n i

n n n
n n





 
          

 

         
           

      


 

   
( 1) 2

1

2 42 42 18 18 6 (21 11)
n

i

n i n n




 
       

 
  

 21
63 42 19

2
n n   . 
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The numbers with star in ( )c

e nCS  are the degrees of 1 2 3 4, , ,i i i if f f f  and 6if  for 

2

n
i

 
  
 

. But, 11 1deg ( ) deg ( ) 7
n nCS CS nf f   and 12 13deg ( ) deg ( )

n nCS CSf f  

4 6deg ( ) deg ( ) 4
n nCS n CS nf f    are obtained. Therefore, we subtract  18 6n  

from the ( )c

e nCS  in the Cases 1 and 2.  

The proof is completed.       

Theorem 2.2. Let nDCS  be a double chain silicates network of length 4n   . 

Then,  
22

2 2

22

37 93 1 1
40 42 84 (102 88 )

2 2 4 4 4

176 84 56 112 , ;
4 4 4 4

( )
93

18 31 102( 1) 204
2 4 4

84( 1) 168
4 4

c

e n

n n n n
n n n

n n n n
n if n is odd

DCS
n n n

n n

n n
n



      
           

     

       
          

       


   
        

   

   
     

   

2

, .if n is even















 

Proof. We will consider two cases in which n is even and odd, separately.   

Case 1. n is even. 

We first label the edges of the double chain silicates network nDCS  as in Figure 

6. Note that we need to compute the degree and the eccentricity value of each  

edge in the first and second layer of the silicates, that is, the edges f and f’, since 

the other layers are symmetric. According to our labeling, if n is even, then the 

number of silicates in the first and the second layer is the same which is / 2,n  

however, the number of silicates in the first and the second layer is / 2n    and

/ 2n   , respectively, when n is odd. 

 

Figure 6. Labeling of the edges in a double chain silicates network nDCS , where n is even. 

 

The degrees of the edges in a double chain silicates network nDCS  of even length 

n are as follows for the edges in the first layer; 
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1

4 6

2 3

5

( /2)1 ( /2)4 ( /2)6

deg ( ' ) 10
, 1

deg ( ' ) deg ( ' ) 7 2

deg ( ' ) deg ( ' ) 7
, 1

deg ( ' ) 4 2

deg ( ' ) 7,deg ( ' ) deg ( ' ) 4.

n

n n

n n

n

n n n

DCS i

DCS i DCS i

DCS i DCS i

DCS i

DCS n DCS n DCS n

f n
where i

f f

f f n
where i

f

f f f

 
 

  

  
 

 

  

 

For the edges in the second layer; 

1 3

2

4 5

6

12 13 12

deg ( ) deg ( ) 10
, 1

deg ( ) 7 2

deg ( ) deg ( ) 7
, 1

deg ( ) 10 2

deg ( ) deg ( ) 7,deg ( ) 4.

n n

n

n n

n

n n n

DCS i DCS i

DCS i

DCS i DCS i

DCS i

DCS DCS DCS

f f n
where i

f

f f n
where i

f

f f f

  
 

 

  
 

 

  

 

The eccentricity values of the edges in a double chain silicates network nDCS  of 

even length n  can be derived as follows for the edges in the first layer; 

2 3 5

1 4 6

1 2 3

4 5 6

( ' ) ( ' ) ( ' ) 2 2
,

( ' ) ( ' ) ( ' ) 1 2 4

( ' ) ( ' ) ( ' ) 2
,

( ' ) ( ' ) ( ' ) 2 1 4

n n n

n n n

n n n

n n n

DCS i DCS i DCS i

DCS i DCS i DCS i

DCS i DCS i DCS i

DCS i DCS i DCS i

f f f n i n
where i

f f f n i

f f f i n
where

f f f i

  

  

  

  

       
        

     
     

1 .
2

n
i  

 

For the edges in the second layer; 

1 3 4 5 6

2

1 2 3 5 6

4

( ) ( ) ( ) ( ) ( ) 2 2
,

( ) 3 2

4

( ) ( ) ( ) ( ) ( ) 2 1
,

( ) 2

1 .
4 2

n n n n n

n

n n n n n

n

DCS i DCS i DCS i DCS i DCS i

DCS i

DCS i DCS i DCS i DCS i DCS i

DCS i

f f f f f n i

f n i

n
where i

f f f f f i

f i

n n
where i

    



    



       


   

 
  
 

      


 

 
   

 

 

      Since the bottom two layers are symmetric with respect to the top two layers 

we multiply the eccentric connectivity index of the graph at the top two layers by 

two to calculate the eccentric connectivity index of a nDCS . That is, 

        
/2 6

1 1

( ) 2 ( ' )deg ( ' ) ( )deg ( )
n n n n

n
c

e n DCS ij DCS ij DCS ij DCS ij

i j

DCS x f f f f  
 

 
  

 
  . 

       The first and the second term of the inner summation belong to the first and 

second layer of the nDCS , respectively. Now, we investigate the eccentric 
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connectivity index of the edges in the first layer and denote it by EC1 then of the 

second layer and denote it by EC2. 
/2 6

1 1

/4 6 /2 6

1 1 /4 1 1

1 ( ' )deg ( ' )

( ' )deg ( ' ) ( ' )deg ( ' )

( 1 2 )10 ( 2 2 )7 ( 2 2 )7 ( 1 2 )7 ( 2 2 )4

( 1

n n

n n n n

n

DCS ij DCS ij

i j

n n

DCS ij DCS ij DCS ij DCS ij

i j i n j

EC f f

f f f f

n i n i n i n i n i

n



 

 

  

      

 
  

 

   
    

   

             


 

 

   

 

/4

1

/2
* * *

/4 1

22

2 )7

2 (10 7 7) (2 1)(7 4 7 ) (9 6)

21
6 21 42( 1) 84 .

2 4 4

n

i

n

i n

i

i i n

n n n
n n

  



   

 
 

 

        

   
           





The numbers with star in EC1 are the degrees of 1 4 6' , ' , 'i i if f f  for 

/ 4 1 / 2n i n     . However, ( /2)1 ( /2)4deg ( ' ), deg ( ' )
n nDCS n DCS nf f  and 

( /2)6deg ( ' )
nDCS nf  are 7,4 and 4, respectively. Therefore, we subtract (9n+6) from 

the 1EC . 

 

/2 6

1 1

/4 6 /2 6

1 1 /4 1 1

* * *

2 ( )deg ( )

( )deg ( ) ( )deg ( )

( 2 2 )10 ( 3 2 )7 ( 2 2 )10 ( 2 2 )(7 7 10) (3 (3 3

n n

n n n n

n

DCS ij DCS ij

i j

n n

DCS ij DCS ij DCS ij DCS ij

i j i n j

EC f f

f f f f

n i n i n i n i n n



 

 

  

      

 
  

 

   
    

   

                

 

   

 

/4

1

/2

/4 1

22

) 3 )

(2 1)10 (2 1)7 (2 1)10 2 7 (2 1)(7 10)

11 51
3 51( 1) 102 .

2 4 4 4

n

i

n

i n

n

i i i i i

n n n n
n

  



   



          

   
            





Finally, if we sum EC1 and EC2 and multiply the summation by two, then we 

obtain the following formula which proves the Case 1: 
2 2293

( ) 18 31 102( 1) 204 84( 1) 168 .
2 4 4 4 4

c

e n

n n n n n
DCS n n n

       
                       

Case 2. n is odd. 

Similar to that used to prove Case 1.     

The proof is completed. 

 

3.    Conclusion 

 

       Research on the topological indices of graphs has been intensively rising 

recently. The most common usage areas of these indices are networks and 
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measurements of the durability of chemical graphs. In this paper, exact formulas 

for the edge eccentric connectivity index of two different types of  silicates 

networks have been derived. Besides, we tested and verified the formulas of the 

theorems for several nCS  and nDCS  using Mathematica. We gave a Mathematica 

code in Appendix that computes the eccentric connectivity index for not only 

silicates networks but any undirected graph.  

 In future, we are interested to study different topological indices of silicate 

networks and compare the results with the edge eccentric connectivity index. 
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Appendix 

The code below runs in Mathematica 10.2 for a given undirected graph G which is represented by 

adjacency list. 

 

 


